Skip to main content

Introduction of Availability

AVAILABILITY 

Availability is a performance criterion for repairable systems that accounts for both the reliability and maintainability aspects of a system. It is defined as the probability that the system is operating properly when it is required for use. That is, availability is the probability that a system is not failed or undergoing a repair action when it needs to be used. The numerical value of availability is expressed as a probability from 0 to 1. Availability calculations take into accounts both the failures and repairs of the system. For example, if a lamp has 99.9% availability, there will be one time out of a thousand that someone needs to use the lamp but it is non-operational because the switch is broken, or it is waiting for the replacement of a light bulb etc.   

AVAILABILITY CLASSIFICATION

The definition of availability is somewhat flexible, depending on what types of down times are considered in the analysis. As a result, there are a number of different classifications of availability.
·         Point (Instantaneous) Availability
·          Average Up-Time Availability (Mean Availability)
·          Steady State Availability
·         Operational Availability

Point Availability
Point, or instantaneous availability is the probability that a system (or component) will be operational at any random time, t. This is very similar to the reliability function in that it gives a probability that a system will function at the given time, t. Unlike reliability, the instantaneous will be operational if the following conditions are met:

1. It functioned properly during time t with probability R (t), or,
2. It functioned properly since the last repair at time r, 0< r<1, with probability


Average Up-Time (Mean) Availability
The mean availability is the proportion of time during a mission or time-period when the system is available for use. It represents the mean value of the instantaneous availability function over the period (0, T)   

Steady State Availability 
The steady state availability of the system is the limit of the instantaneous availability function as time approaches infinity. The instantaneous availability function approaches the steady state value very closely at time approximate to four times the Mean Time Between Failure (MTBF).

Operational Availability
Operational availability is a measure of availability, which includes all experienced sources of downtime, such as administrative downtime, logistic downtime, etc. The equation for operational availability is:

Where the operating cycle is the overall time period of operation being investigated, and up time is the total time the system was functioning during the operating cycle. The operational availability is the availability that the customer actually experiences. The previous availability definitions are a prior estimations based on models of the system failure and downtime distributions. In many cases, operational availability cannot be other factors that are the sole province controlled by the manufacturer due to variation in location, resources, and of the end user of the product.

Comments

Popular posts from this blog

Boiler Mounting - Blow off cock

BLOW OFF COCK Functions: ·         To discharge a portion of water when the boiler is in operation to blowout mud, scale or sediment periodically. ·         To empty the boiler, when necessary for cleaning, inspection & repair. ·         It is fitted on the boiler shell directly or to a short branch at the lowest part of the water space. This pipe is known as blow-down pipe. Working:   In order to operate the valve, the rectangular slot is brought in line with the passage of the body. This is possible by rotating the plug with the help of wheel. When the slot is placed in this position, the cock is opened and all the impurities, mud, sediments etc. Start flowing out of the boiler and they are removed. When the slot is brought at right angles to the passage of the body, the cock is closed. Image - Blow Off Cock Fig - Blow Off Cock...

Boiler Mounting - Water Level Indicator

WATER LEVEL INDICATOR Function:   It is indicates the water level inside the boiler to an observer. Working:  The water of the boiler comes into the glass tube through the lower tube and the steam through the upper tube. The water then stands in the glass tube at the same level as in the boiler. Two cocks are used to control the passage of between the boiler and the glass tube while the third cock is in used to discharge some of the water from inside the boiler to see whether the gauge is in proper order or not. The glass tube is protected by means of a cover, made of specially toughened glass, which will prevent any accident that may happen due to breaking of glass tube. It is used for ordinary boilers. Image - Water Level Indicator Figure - Water Level Indicator

Boiler Mountings - Dead Weight Safety Valve

DEAD WEIGHT SAFETY VALVE Function:- A valve is placed upon a valve seat that is fixed upon a long vertical pipe having a flange at the bottom for fixing at the top of the boiler. Suspended at the top of the valve is the weight carrier that carries cast iron rings. The total weight must be sufficient to keep the valve on its seat against the normal working pressure. When the steam pressure exceeds the normal limit, it lifts the valve with its weight & the excess steam escape through the pipe to the outside. This valve is used only with stationary type of boilers. It is the most elementary type of safety valve. The objection to dead weight safety valve is the heavy weight that has to be carried. Image - Dead Weight Safety Valve Figure - Dead Weight Safety Valve