Skip to main content

INDUSTRIAL ENGINEERING

INDUSTRIAL ENGINEERING

Information collection and recording
Information collection techniques:
The accuracy of data about the method study problem is important for the development of improved method. The following techniques are used for the collection of information / data about the task under consideration. These are not exclusive of each other, and for any particular method study problem, some or all the techniques may be employed.

·         OBSERVATION
It is a common technique used for collecting information about the present method or the existing problem. The method study person visits the site where the work is currently being done and observes various steps in the method being followed. There are many instances where all the data needed is obtained by only observing the work or work site.

·        DISCUSSION
Discussion with those who do or who supervise the work can frequently provide information not obtainable by observation. The discussion technique is commonly used where irregular work is involved or where one is trying to analyze past work in order to improve efficiency of work to be done in future.
Even where observation by itself may accomplish the data collection task, discussion may be used for developing good human relations.

·        RECORDS
Valuable information can be obtained from past records concerning production, cost, time, inventory and sub-contracts. For certain type of information concerning the past practice, sometimes this is the only way to obtain authentic data.

·        MOTION PICTURES OR VIDEO FILMS
Accurate and most detailed information can be obtained by taking motion pictures or video film. Information obtained by this procedure can easily be transmitted / forwarded to all levels in the organization and if needed, can be used directly for training purposes. The film can be used to focus attention at particular point or motion in an operation. For obtaining information concerning those types of work that involve large crew size, it is probably the only procedure.

Information recording techniques:
There are three main types of information recording techniques. These are
• Process charts
• Diagrams
• Templates

PROCESS CHART: - It is a graphic means of representing the activities that occur during a manufacturing or servicing job.
There are several types of process charts. These can be divided into two groups.
1.     Those which are used to record a process sequence (i.e. series of events in the order in which they occur) but do not depict the events to time scale.

      Charts falling in this group are
·        Operation process chart
·        Flow process chart – (man / material / equipment type)
·        Operator chart (also called two handed process chart)

2.     Those which record events in the sequence in which they occur on a time scale so that the interaction of related events can be more easily studied. Charts falling in this group are
·        Multiple activity chart
·        SIMO chart

DIAGRAMS: - A diagram gives pictorial view of the layout of workplace or floor on which locations of different equipment, machines, etc. Are indicated. The movement of subject (man or material) is then indicated on the diagram by a line or a string. The diagrams are valuable in highlighting the movement so that analyst can take steps to simplify or reduce it and thus effect saving in time or reduction in collisions / accidents.


Comments

Popular posts from this blog

APRON MECHANISM IN LATHE

APRON MECHANISM IN LATHE Apron Mechanism: Apron is attached to the carriage and hangs over the front side of the lathe bed. It is useful in providing power and hand feed to both carriage and cross-slide. It is also used to provide power feed to the carriage during thread cutting through two half nuts. The construction of apron is shown in Fig. Fig - Apron Mechanism Construction Power is transmitted from the spindle to the lead screw and feed rod through the spindle gear and tumbler gear arrangement. A worm is mounted on the feed rod by a sliding key. The worm meshes with a worm gear on whose axis another gear G1 is attached. Gear G1 is attached to a small gear G2 by a bracket as shown in the diagram. Gear G4 is positioned to be in mesh with the rack gear always. Another gear G3 is mounted on the same axis of gear G4. The carriage hand wheel meant for longitudinal feed is attached to the gear G5 on the same axis. The gears G3 and G5 are always in mesh. The gear G

Boiler Mountings - Dead Weight Safety Valve

DEAD WEIGHT SAFETY VALVE Function:- A valve is placed upon a valve seat that is fixed upon a long vertical pipe having a flange at the bottom for fixing at the top of the boiler. Suspended at the top of the valve is the weight carrier that carries cast iron rings. The total weight must be sufficient to keep the valve on its seat against the normal working pressure. When the steam pressure exceeds the normal limit, it lifts the valve with its weight & the excess steam escape through the pipe to the outside. This valve is used only with stationary type of boilers. It is the most elementary type of safety valve. The objection to dead weight safety valve is the heavy weight that has to be carried. Image - Dead Weight Safety Valve Figure - Dead Weight Safety Valve

DOM MANUAL / B-TECH / MECHANICAL / KUK - TO FIND THE SPEED AND TORQUE OF DIFFERENT GEARS IN AN EPICYCLIC GEAR TRAIN.

OBJECTIVE: TO FIND THE SPEED AND TORQUE OF DIFFERENT GEARS IN AN EPICYCLIC GEAR TRAIN. SPECIFICATIONS : 1.       GEAR TRAIN : SUN GEAR : 14 TEETH 2.       PLANT GEAR: 21 TEETH (2 NOS.) 3.       INTERNAL GEAR WITH : 56 TEETH TORQUE MEASUREMENT ·          INPUT TORQUE – MOTOR CURRENT CALIBRATED FOR MOTOR TORQUE. ·          PLANT CARRIER - PULLEY OF 50 MM DIA AND SPRING BALANCE. ·          INTERNAL GEAR - PULLEY, 120 MM DIA AND SPRING BALANCES. Ø   BOTH PULLEYS ARE PROVIDED WITH ROPE OF 12 Ø   MM DIA Ø   DRIVE MOTOR - 1HP DC MOTOR RPM MOTOR OPERATING ON 220 VOLTS Ø   50 HZ SUPLLY, DRIVING THE SUN GEAR. CURRENT(AMPS) TORQUE 1.00 0.5 1.20 1.5 1.40 2.5 1.60 3.0 1.80 4.0 2.00 5.0 2.20 6.0 MOTOR  CALIBRATION  CHART THEORY : WHENEVER THE DISTANCE BETWEEN THE DRIVING AND DRIVEN MEMBER, (BOTH SHAFTS ARE NOT OPERATING ON THE SAME A